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1. INTRODUCTION

Signi"cant recent attention has been given to the assessment of the nation's rapidly
aging infrastructure. For example, 50% of the National Highway System's
260,000 km of roadway has been rated as &&poor to fair'' [1], and about 32% of
576,000 bridges in service have been rated as &&de"cient'' [2]. Such studies have
fostered e!orts in populating civil structures such as bridges with sensor arrays
[3, 4] whose measurements are able to be analyzed with an eye towards condition
assessment and/or damage detection [5}7]. These data could be aggregately
incorporated into databases that may become useful in predicting or re-evaluating
service life.

Traditional sensing strategies have focused primarily on conventional
distributed strain measurement networks, where typically on the order of only
10}25 independent sensors are used due to hardware limitations, cost, or both [8];
this relative paucity of data points can be insu$cient for proper dynamic
interrogation of a structure such as a bridge. However, the emergence and maturity
of "ber Bragg grating (FBG) optical strain-sensing systems has provided a useful
alternative, o!ering advantages of electromagnetic immunity, negligible
invasiveness, corrosion resistance, and structural-grade performance with inherent
multiplexibility [9]. Their wavelength-encoded operation principle, along with
appropriate demultiplexing electronics technology, have made high sensor count
FBG arrays a practical tool in bridge monitoring [10].

With such hardware in place for adequate strain data collection, it is often
important, especially when considering the inputs needed for various condition
assessment or damage detection algorithms, to measure the dynamic de#ection of
the bridge. A number of axial strain-to-displacement methods have been
demonstrated including global basis functions [11, 12], local basis functions
[13}15], and methods utilizing modal test data [16]. The basis function methods
involve choosing a priori a set of functions in the axial co-ordinate which are "t to
measured strain data over some known length of the structure and implementing
a simpli"ed formulation of the Cauchy tensor which relates strain to displacement,
e.g., the Euler}Bernoulli theory. In the case of global functions, this operation is
completed over relatively large length scales of the structure, e.g., an entire span of
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a bridge, while with local functions, the structure is discretized into elements, and
the strain is usually assumed to be a quadratic polynomial. The overall de#ection of
the structure is constructed piece-wise by enforcing continuity of de#ection and
slope between elements.

The common relationship invoked in all of these basis function methods, at least
when the structure is assumed to be primarily one-dimensional (such as with
a bridge), is the Euler}Bernoulli beam theory. This well-known classic theory,
which assumes that plane sections normal to the beam's centroidal axis remain
normal under bending, has been shown to be a very useful and easily implemented
theory for a number of long, slender structures where the radius of gyration is
negligible compared to the axial length. One implication of this theory is the neglect
to shear strain and for cases where the shear strain is not negligible, Timoshenko
formulated a theory, e.g., see reference [17], whereby deformation is coupled to
both bending and shearing e!ects. While many bridges have long spans and
relatively shallow supporting girders*a situation for which Euler}Bernoulli theory
is likely appropriate*many short-span overpass bridges or railway bridges (with
very deep supporting girders) may violate negligible radius of gyration assumptions
and require a shear correction.

This paper will present a global basis functional method in which shear e!ects
are included but no independent measurements of the shear strain are needed to
reconstruct the transverse displacement. The resulting strain-to-displacement
relationship, like with the Euler}Bernoulli formulation, is suitable for application
of a global basis function approach. After presenting the method, this paper will
demonstrate it utility on two examples: (1) a statistically loaded multi-span beam,
and (2) a single-span beam loaded with a moving concentrated load, serving as
a crude model of a bridge span being traversed by a single vehicle. Although the
example of bridges will be exploited in this paper, it is expected that this
shear-corrected method will provide, for any beam-like structure where slenderness
assumptions are suspect, an improved de#ection estimate from measured axial
strain data.

2. THEORETICAL DEVELOPMENT

2.1. SHEAR DEFORMATION EFFECTS

When shear deformation is considered along with the usual pure bending e!ects
in the transverse de#ection of a beam, Timoshenko theory [17] states that

Lw(x, t )
Lx

"W (x, t )#b (x, t ), (1)

where w(x, t) is the transverse de#ection, W (x, t ) is the rotation of normal lines to
the beam's centroidal axis (centerline) under bending deformation, and b (x, t) is the
rotation of tangent lines to the beam's centerline under shearing deformation. The
contribution of W(x, t ) is shown in Figure 1(a); segment m}n maps to segment m@}n@
under pure bending. Conversely, in Figure 1(b), with consideration of shear e!ects
only, segment m}n remains the same, while segment a}b maps to segment a}b@.



Figure 1. (a) A beam section subject to pure bending; (b) a beam section subject to pure shear
deformation.
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Hence, these two e!ects, under the linearization associated with small de#ections,
can be superimposed as in equation (1).

One implied assumption in equation (1) is that the angle b is constant in z, which
means the shear strain (stress) is constant over the beam thickness. While this
cannot occur under transverse normal loading, functional dependence upon z
removes the inherent simplicity of one-dimensional beam theory, and the
discrepancy can be reasonably remedied with the application of a shear correction
factor, k

s
[18].

The total displacement vector u; in the x and z directions of a point along the
centerline is u;"u(x, z, t ) i;#w(x, t)k; , where the horizontal displacement
component u (x, z, t ) for a point at a distance z away from the centerline is
u(x, z, t )"!zW(x, t). From the linearized strain-displacement components of the
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Cauchy tensor
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the two non-zero strains for a one-dimensional beam structure are given by
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where no purely axial loads have been applied, and equation (1) has been used in
equation (4).

Minimization of the Lagrangian, with shear deformation e!ects included, yields
the governing equations for an isotropic beam:
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where E is Young's modulus, G"E/2(1#l) is the shear modulus, I is the area
moment of inertia, A is the cross-sectional area, l is the Poisson ratio, and q (x, t ) is
the applied distributed transverse load. Decoupling these equations and
non-dimensionalizing results in the equation for the de#ection w (x, t ),
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where x"x/¸, w(x, t )"w(x, t)/¸, r2"I/A¸2, k2"EI/oA¸4, i2"2(1#l)/k
s
,

and Q (x, t ) is the non-dimensionalized transverse load. Euler}Bernoulli theory
assumes that r is small compared to unity and can be neglected, which would result
in the familiar classical expression

k2
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This is usually an accurate assumption for slender beam structures which have
a long length compared to thickness, as r typically varies as the ratio of thickness to
length.

2.2. TRANSVERSE SHAPE RECONSTRUCTION

As discussed previously, shape reconstruction approaches typically have ignored
shear deformation e!ects, primarily because the resulting Euler}Bernoulli
strain}displacement relationship is very tractable. If shear strain c is neglected, then
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W"Lw/Lx, and equation (3) becomes, after rearranging,

L2w
Lx2

"!A
1
zB e. (8)

At this point, a set of basis functions is chosen to "t measured strain values, and the
constructed strain function is integrated twice with respect to x in accordance with
equation (8) with appropriate uniqueness or boundary conditions to approximate
the de#ection w(x, t). Strictly speaking, in the cases of dynamic behavior, this
reconstruction approach would have to be preformed at each time step in order to
recover successfully the time history of the de#ection.

If shear deformation e!ects are not neglected, however, it may appear that
the coupled nature of the governing equations (5) and the strain}displacement
relationships of equations (3) and (4) would require measurement of both axial and
shear strains independently in order to reconstruct w(x, t). However, if equation (1)
is di!erentiated with respect to x, and equations (3) and (4) are utilized, the result is
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Similarly, substitution of equations (3) and (4) into the "rst of equations (5) yields
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The strains in equations (9) and (10) can then be decoupled to give, after rearrang-
ing,
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where the same parameter substitutions and non-dimensionalizations made in
equation (6) were made here. This equation directly relates the shear-corrected
transverse de#ection w(x, t ) to the axial strain e only, thus requiring no independent
measurements of shear strain c. Again, allowing rP0 recovers the Euler}Bernoulli
formulation, (8).

It is assumed, as before, that the strain e at each instant of time t can be
represented as a sum of general global basis functions /

i
(x), or

e"
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+
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a
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/
i
(x), (12)

where the a
i

are unknown coe$cients (dependent on the current time step if
dynamics are involved), and N is less than or equal to the number of total strain
measurements made. The choice of basis functions is somewhat arbitrary, provided
they are smoothly di!erentiable; logical choices for /

i
(x) include the dynamic mode

shapes and polynomials, typically depending upon what types of loading are
expected. If the strain measurements are obtained with sensors whose gage lengths
are non-negligible relative to the axial length of the structure, an average strain eN is
measured at their locations. In terms of the assumed basis function expansion, the
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average strain eN
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measured at the jth sensor location is
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sensor gage length is negligible in relation to the structure size, i.e., b

j
Pa

j
, then

c
ji
P/

i
(a

j
).

¹he instantaneous de#ection w(x),w(x, t ) can thus be represented, using equa-
tions (11) and (12) and rearranging,
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where U
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(x) is the inde"nite double integral of /
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i
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from the inversion of or the least-squares solution of equation (13). The constants
can be obtained by specifying two boundary conditions for the beam; typically,
these displacements are zero, and using w(0)"w(1)"0,
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Equation (14) applies to a single beam and can be extended to a structure that is
composed of a number of connected beam elements, e.g., as in a bridge where each
span between supports could be thought of as &&beam''. Each span can be described
by a function similar to equation (14) with the added conditions of continuous slope
and de#ection across spans to retain solution uniqueness.

3. SHAPE RECONSTRUCTION EXAMPLES

3.1. STATIC LOAD

As a "rst example, we consider a two-span beam statistically loaded with the load
distribution as shown in Figure 2(a), The static solution [w (x), W(x)] of the coupled
equations (5) with simply supported boundary conditions at each end and continu-
ity of slope and de#ection cross the middle support was obtained, and the axial
strain was computed by equation (3). This strain function was used to generate the
measurement data at four suboptimized sensor locations along each span for a total
of eight measurements.



Figure 2. Load distribution for (a) static example; (b) dynamic example.
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For shape reconstruction in this case, a polynomial function basis was chosen for
/
i
(x), resulting in a cubic polynomial (four unknown coe$cient associated with

four measurements) for strain and a quintic polynomial for displacement.
Polynomials were chosen because they form a natural basis in statically loaded
beam problems. Gage lengths were assumed to be negligible such that c

ji
"ai

j
, and

the results comparing the estimated shape to the exact analytical shape are shown
in Figure 3 for various values of ir. Further comparison was drawn by including
the shape reconstruction based on the Euler}Bernoulli approach. For small ir, i.e.,
for a small radius of gyration, the results all tend to match, as expected. As ir is
increased, however, shear e!ects are no longer negligible, and a clear discrepancy is
observed between the shear deformation formulation and the Euler}Bernoulli
formulation. At ir"0)25, the Euler}Bernoulli shape estimation appears to deviate
signi"cantly from the exact shape, while the shear-corrected estimation continues
to approximate the shape well.

A more quantitative measure of the error associated with the shape estimation
can be obtained by de"ning the root-mean-square error p of the di!erence between
the basis "t and the exact shape function

p"S
1
¸ P

L

0

(w (x)!wL (x))2dx, (16)

where w(x) is the exact de#ection, and wL (x) is the reconstructed de#ection using the
chosen function basis. For the example under current consideration, this integral
was calculated for both the shear-connected expression [equation (11)] and the
Euler}Bernoulli expression [equation (8)] using the polynomial basis. The results
are shown in Table 1 for three di!erent values of ir and three di!erent



Figure 3. Exact and estimated displacements with d"0 for (a) ir"0, (b) ir"0)1, (c) ir"0)25;
4 sensors/span were used; *, exact; ---, shear corrected; } ) ) }, Euler-Bernoulli.

TABLE 1

A comparison of error between shear-corrected and Euler}Bernoulli formulations for
the shape estimtion of a two-span statistically loaded beam: variable sensor count, no

added noise

p
4)%!3~#033%#5%$

p
E6-%3~B%3/06--*

k"0)0 k"0)1 k"0)5 k"0)0 k"0)1 k"0)5

3 sensors/span 8)73]10~5 1)79]10~4 2)27]10~3 8)73]10~5 3)88]10~3 3)17]100
4 sensors/span 2)38]10~5 9)87]10~5 1)91]10~3 2)38]10~5 6)94]10~4 1)79]10~2
5 sensors/span 1)90]10~7 5)81]10~6 1)43]10~4 1)90]10~7 7)17]10~4 1)79]10~2
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TABLE 2

A comparison of error between shear-corrected and Euler}Bernoulli formulations for
the shape estimtion of a two-span statistically loaded beam: 5 sensors/span, variable

noise

p
4)%!3~#033%#5%$

p
E6-%3~B%3/06--*

k"0)0 k"0)1 k"0)5 k"0)0 k"0)1 k"0)5

d"0)01 7)68]10~5 1)85]10~4 4)71]10~3 7)68]10~5 7)65]10~4 1)80]10~2
d"0)04 5)72]10~4 1)24]10~3 1)81]10~2 5)72]10~4 1)55]10~2 3)39]100

LETTERS TO THE EDITOR 589
sensor counts for each span. Provided irO0, the error calculated in the
shear-corrected formulation is always smaller, with equivalence at ir"0, as
expected; in many cases, the error is as much as two orders of magnitude less.
Furthermore, the error decreases with increased sensor count, also as expected. It
should be reiterated that the sensor locations were not optimized in any way such
that absolute values of p are not as globally meaningful as relative values; it is
possible that all the values presented in Table 1 can be reduced, perhaps even
signi"cantly, merely by judicious sensor placement [19].

In any real measurement, a certain amount of error also arises, not due to model
short-comings or even sensor density and placement issues, but rather due to
inherent performance characteristics of the measurement device. To simulate this
e!ect, a random noise component with zero mean and a range of $d(q

0
z¸2/EI)

was added to the strain measurements. Using a constant "ve sensors/span, the
values of p were obtained as shown in Table 2. Increases in d degraded the
estimation algorithms, although the shear-corrected formulation remained more
robust. The visual e!ects of the noise on the estimated shapes are shown in Figures
4 and 5. For d"0)01, the e!ects of sensor noise do not appear signi"cant until
ir"0)25, especially when compared to Figure 3. For d"0)04, the error,
particularly in the Euler}Bernoulli formulation, becomes considerable, and even
the shear formulation miscalculates the shape. It can be shown that as dPi2r2,
sensor noise in#uences can become signi"cant enough to negate any advantage
gained by including the shear correction terms. For "ber optic strain-sensing
systems, where nanostrain resolution is possible, this condition is unlikely to be met
unless very small loads relative to the structure's inherent bending characteristics
are present.

3.2. DYNAMIC LOAD

For a dynamically loaded example, we consider Figure 2(b), where a single-span
simply supported beam is excited by a point load moving from left to right across
the beam at velocity v (chosen to be 0)1 in the forthcoming example, which is well
below the "rst resonance of the span). Such an example could approximately model



Figure 4. Exact and estimated displacements with d"0)01 for (a) ir"0, (b) ir"0)1, (c) ir"0)25;
4 sensors/span were used; *, exact; ---, shear corrected; } ) ) }, Euler-Bernoulli.
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a vehicle moving across a bridge span. The full-coupled equations (5) were solved
using modal superposition, where the eigenmodes chosen for w(x, t ) and W(x, t )
were those for a simply supported Euler}Bernoulli beam. The axial strain at any
time t was again computed from equation (3). For basis functions, the simply
supported eigenmodes were also used, with sensor gage lengths again assumed
negligible.

Figure 6 compares the exact, shear-corrected, and Euler}Bernoulli results at
t"0)08 s, just as the point load moves on to the span, for di!erent values of ir.
Eight sensors evenly distributed across the span were used to reconstruct the
de#ections, and 16 modes were chosen to construct the exact solution. As in the
static case, very small values of ir do not discriminate greatly between approaches.



Figure 5. Exact and estimated displacements with d"0)04 for (a) ir"0, (b) ir"0)1, (c) ir"0)25;
4 sensors/span were used; *, exact; ---, shear corrected; } ) ) }, Euler-Bernoulli.
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However, at ir"0)25, only the shear-corrected approach captures any of
the poly-modal behavior at that instant; the Euler}Bernoulli reconstruction is not
only qualitatively misrepresentative but also quantitatively incorrect by an order
of magnitude. However, even when a relatively large number of modes are not
acting, the Euler}Bernoulli formulation fails at higher ir. Figure 7 compares the
same data as Figure 6 at t"0)5 s, just as the point load is moving past mid-span,
and the span is nearly undergoing its maximum de#ection. The shear-corrected
formulation, in this case, almost exactly reproduces the exact shape, while the
Euler}Bernoulli formulation is o! by almost 50%. Such an error could have serious
consequences on estimating load, bending moment or shear force, and modal
participation levels.



Figure 6. Exact and estimated dynamic displacements at t"0)08 for (a) ir"0, (b) ir"0)1, (c)
ir"0)25; 8 sensors were used; *, exact; ---, shear corrected; } ) ) }, Euler-Bernoulli.

592 LETTERS TO THE EDITOR
4. SUMMARY

This paper has developed a shear-corrected extension, making use of
Timoshenko beam theory, of global basis function approaches to shape
reconstruction of one-dimensional structures from axial strain measurements. The
method accurately accounts for shear deformation e!ects, typically most prevalent
in structures with non-negligible rotary inertia compared to length, without the
necessity of independently measuring shear strain directly; this is an important
consideration from the viewpoint of sensor count and placement optimization.
Such formulation can be readily applied in real time, depending upon the
measurement acquisition rate and the number of sensors, as processor time will be
distributed between inverting the matrix c

ji
at each time step (assuming a dynamic



Figure 7. Exact and estimated dynamic displacements at t"5 for (a) ir"0, (b) ir"0)1, (c)
ir"0)25; 8 sensors were used; *, exact; ---, shear corrected; } ) ) }, Euler-Bernoulli.
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load) and sampling the next data point. While the speci"c structural context of this
paper was bridges, it is expected that this formulation can be used on any
pseudo-one dimensional structure where axial strain measurements are readily
obtained, such as ship hull sub-structures, truss con"gurations, or sti!ening
elements on larger structures. Data from such sensor-populated structures, used in
conjunction with analysis such as shape reconstruction, can provide an important
component in building a structural health monitoring system.
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